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Abstract
Newcastle disease (ND), caused by avian orthoavulavirus type-1 (NDV), is endemic
in poultry in many regions of the world and causes continuing outbreaks in poultry
populations. In the Middle East, genotype XXI, used to be present in poultry in Egypt
but has been replaced by genotype VII. We investigated whether virus evolution con-
tributed to superseding and focussed on the antigenic sites within the hemagglutinin-
neuraminidase (HN) spike protein. Full-length sequences of an NDV genotype VI
isolate currently circulating in Egypt was compared to a genotype XXl isolate that
was present as co-infection with vaccine-type viruses (ll) in a historical virus iso-
lated in 2011. Amino acid differences in the HN glycoprotein for both XXI and VII
viruses amounted to 11.7% and 11.9%, respectively, compared to the La Sota vaccine
type. However, mutations within the globular head (aa 126-570), bearing relevant
antigenic sites, were underrepresented (a divergence of 8.8% and 8.1% compared to
22.4% and 25.6% within the protein domains encompassing cytoplasmic tail, trans-
membrane part and stalk regions (aa 1-125) for genotypes XXI and VII, respectively).
Nevertheless, reaction patterns of HN-specific monoclonal antibodies inhibiting re-
ceptor binding revealed differences between vaccine-type viruses and genotype XXI
and VII viruses for epitopes located in the head domain. Accordingly, compared to
Egyptian vaccine-type isolates and the La Sota vaccine reference strain, single aa
substitutions in 6 of 10 described neutralizing epitopes of HN were found. However,
the same alterations in neutralization sensitive epitopes were present in old geno-
type XXl as well as in newly emerged genotype VIl isolates. In addition, isolates were
indistinguishable by polyclonal chicken sera raised against different genotypes in-
cluding vaccine viruses.

These findings suggest that factors other than antigenic differences within the
HN protein account for facilitating the spread of genotype VIl versus genotype XXI

viruses in Egypt.
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1 | INTRODUCTION

Newcastle disease (ND) is a highly contagious disease with significant
clinicalimpactin poultry and serious economic losses worldwide. The
causative agent, Newcastle disease virus (NDV) or avian paramyxo-
virus type-1 (APMV-1), is a species within the genus Avian orthoavu-
lavirus 1, a member of the family Paramyxoviridae (Rima et al., 2019).
The genome is composed of a negative-sense, single-stranded RNA
of approximately 15 kb coding for six structural proteins, in the 3' to
5' order nucleocapsid protein (NP), phosphoprotein (P), matrix pro-
tein (M), fusion protein (F), hemagglutinin-neuraminidase (HN) and
large RNA-dependent polymerase protein (L) (Steward et al., 1993).
The HN protein recognizes and attaches to sialic acid receptors on
the surface of permissive cells and mediates the fusion activity of
the F protein at the cell membrane for release of the nucleocapsid
complex into the cytoplasm (Lamb & Parks, 2007).

Based on its pathogenicity in chickens, NDV is categorized into
four groups with increasing virulence from apathogenic, to lento-
genic, mesogenic and velogenic (Alexander, 2000). The molecu-
lar basis for NDV pathogenicity is associated with the amino acid
sequence motif of the protease cleavage site of the fusion protein
and the abilities of specific cellular proteases to cleave this protein.
Based on phylogenetic analysis, NDV can be distinguished into two
distinct classes, 1 and 2, with a single (1.1) and, currently, 21 geno-
types, respectively (2.1-2.XXI) (Dimitrov et al., 2019). Whereas the
majority of class 1 viruses are avirulent and have their natural reser-
voir in aquatic wild birds (Kim et al., 2007), class 2 comprises virulent
viruses evolving over time, that are responsible for the outbreaks
in poultry, as well as in pigeons and cormorants (Miller et al., 2010;
Suarez et al., 2020). Within class 2, lentogenic and mesogenic patho-
types, in addition to velogenic ones, are only found in genotype Il
(Czegledi et al., 2002,2003), and vaccines are derived from lento-
genic strains of this genotype (Seal et al., 1996). Phylogenetic evi-
dence suggests that in the decades prior to the 1970s, genotypes II,
Il and IV were predominant in North America, Asia and Europe, re-
spectively. Genotype VI viruses emerged in epizootics in the Middle
East and Asia in the 1960s and (Herczeg et al., 2001; Wehmann
et al., 2003) gave rise to strains adapted to pigeons, the so-called
“pigeon type paramyxovirus” (PPMV-1) (D. J. Alexander et al., 1985).
The new NDV nomenclature proposal (Dimitrov et al., 2019) classi-
fied the previous subgroups Vlai and Vlaii, encompassing the early
strains circulating in poultry but not in pigeons (Chong et al., 2013),
into the new genotypes XX and XXI, whereas PPMV-1 remained in
genotype VI with several sub-genotypes. Genotype VIl is considered
to have emerged in the Far East and spread to further geographic
areas (Herczeg et al., 1999). Currently, genotype VIl is predominant
among velogenic NDV and can be further subdivided (Dimitrov
et al,, 2019), that is into sub-lineage VII.1. encompassing viruses
that emerged in the 1990s in the Far East, Europe and Asia, and the

Middle East and were responsible for the fourth NDV panzootic and
VI1.2 viruses which emerged in Indonesia, affecting Asia, the Middle
East, Europe, and Africa, and were responsible for the fifth NDV
panzootic (Miller et al., 2015).

In Egypt, ND is endemic and, despite extensive routine vacci-
nation programmes implemented in the commercial poultry farms,
new cases occur continuously, posing a threat to the national poul-
try industry. In Egypt, ND was first identified in 1948 (Daubney &
Mansy, 1948), and in the last few years, NDV genotypes Il and VII
have been reported from the country (Radwan et al., 2013). Also,
co-infections with infectious bronchitis and avian influenza vi-
ruses have been recorded in Egypt (Moharam et al., 2019; Naguib
et al., 2017; Samy & Naguib, 2018). This has raised concerns re-
garding the efficacy of ND vaccination programmes applied in the
country. It has been hypothesized that, due to accumulated muta-
tions as seen previously with highly pathogenic avian influenza virus
(Grund et al., 2011), new NDV antigenic variants have arisen that
have an advantage to spread within a vaccinated population. In con-
sequence, viruses that supersede previous virus populations should
have a gain in fitness, here, mutations within antigenically relevant
sites. To test this hypothesis, four poultry NDV isolates were com-
pared genetically and antigenically. The viruses were chosen as they
represent genotype Il vaccine strains (n = 2), the rare genotype XXI
(former Vla; n = 1), and genotype VII.1.1 (n = 1) that apparently su-
perseded other genotypes in poultry and currently is the dominating
genotype in Egypt. Here we report on the history of the isolates
focussing our analysis on changes within the viral glycoproteins that
facilitate receptor-mediated virus uptake and are the main target for
protective immune responses. In addition, we hit upon the phenom-
enon of co-infections of vaccine and virulent NDV strains in a single

sample causing diagnostic problems.

2 | MATERIAL AND METHOD
2.1 | Sample collection and virus identification

Samples (oropharyngeal and cloacal swabs, trachea or kidneys) were
obtained from outbreaks of systemic disease in three different com-
mercial chicken farms in Egypt during 2011-2013 as shown in table 1.
Samples were collected by the Reference Laboratory for Quality
Control on Poultry production (RLQP)-Animal Health Research
Institute (AHRI) and Beni-Suef University, Egypt, and shipped to
the Friedrich-Loeffler-Institut (FLI), Germany. Identification of NDV
was based on real-time reverse transcriptase polymerase chain re-
action (RT-gPCR) using the Biorad CFX1000 real-time PCR system.
Briefly, RNA was extracted from collected samples by QiaAmp viral
RNA extraction kit (Qiagen, Hilden, Germany) as recommended by

the manufacturer's instructions. NDV nucleic acid was detected by
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SuperScript® 11l one-step RT-PCR using primers and probe specific

E E E to the M gene (Wise et al., 2004). Positive samples were subjected
§ § § to another RT-gPCR to differentiate lentogenic from velogenic vi-
§ § § ruses based on the sequence of the fusion protein cleavage site
g % 2. g cg Ry (FPCS) using primers and probes specific for the F genes (Moharam
- o0 o0 O 0 O
5 N5 N 5 R etal., 2019).
] ® ® © © ®© 4
§ £ $:zz &
o
< =5 s5:55 2
?& 2.2 | Virus isolation
o
[} -
S 3 Hepatocellular carcinoma epithelial cells (LMH) (Kawaguchi
= i ' p
TS
g = 5 : o et al., 1987) were cultured with 2 ug TCPK Trypsin/mL in T25 cul-
© ol Bl Kl é’ ture flasks and infected with 0.5 ml of the NDV-positive samples.
% Cells were incubated at 37°C until giant cell formation was observed
()
IR E or for up to seven days before initiating a second passage following
5] o “ O « - é) a freeze/thaw cycle. Further confirmation using hemagglutination
§ (HA) and hemagglutination inhibition (HI) tests were conducted on
()
= ? the supernatant culture medium (OIE, 2012). Isolated viruses were
% P L T % aliquoted and kept at -80°C until further use.
o ¥ 2 ¥ T =2 o £
3 < o g ) ¢ < =
o ]
s 9282 g g L
L ¥ O OO0 x x T . .
< 2.3 | Plaque purification
o0
()
>
% n @ n @ ;o; Plaque assay was used to obtain purified virus clones for selected
[ . . H N
o B2 §0 I 8;’0 éo % samples showing unequivocal results with pathotype-specific RT-
£ qPCRs. Briefly, different virus dilutions were incubated on conflu-
o)
g a ent LMH cell monolayers cultured in six-well plates overnight at
o
% @ 0 o 3 9 § 9-; 37°C. Then, virus inoculum was removed, cell layers washed care-
oy REY)) 4 Y
,_? = E’;’D N 3 S % %ﬂ fully twice with sterile PBS and overlaid with modified Eagle's me-
% 2 dium containing 1.8% agar. Infected cells were incubated at 37°C
L.>3 § and 55% humidity for three days. Finally, selected plaques were
S :2_ 2R 8 c‘?‘) & ; £ picked and propagated on LMH cells as described above for further
N o0 5 o s B F . -
D B B B 5 9 35 characterization.
[OR 9
8s @
T T T B T B =Sl = . .
§ 555550590 ©vwd B 2.4 | Genetic characterization and
T Y LLeLeLe go S . .
S g phylogenetic analysis
> Z © aQ
E 2y £
Z = B . - 3 05) ° Amplification of a 698 bps fragment spanning part of the M and
— 0 [ ! o
E= iy L L 1. =P Q the F2 gene of NDV was performed using SuperScript Ill One-Step
c 0, £ L L LN o 4
% s g‘ g g‘ g g g S ﬁ L 5 RT-PCR system (Invitrogen) following published protocols (Aldous
- S~ o o
=) ® g g g g g g @ % § c et al., 2003). Amplicons were size-separated by agarose electropho-
e} - b (o]
e 2 § g g 5 5 5 S 28 = resis, excised and purified from gel using the QIAquick gel extrac-
1) o
§ TECE CE LR z u§ 3’; tion kit (Qiagen). Purified PCR products were used directly for cycle
I k=
S § § _; sequencing reactions using BigDye Terminator version 3.1 cycle se-
= 24
5 5 = T =32 = = > Y % % quencing kit (Applied Biosystems). The sequencing reaction products
% L 22222229 ,f 5 by were purified using NucleoSeq kit (Macherey-Nagel) and sequenced
S U YU YU U Y U x ow
] S5 5555585 5= ¢ on an ABI PRISM® 3,100 genetic analyzer (Life Technologies).
% 4 ..u: ) % Assembly of the obtained sequences was performed using the
] S 4 9 2 .
. T § 2% Geneious software, version 9.0.5 (Kearse et al., 2012). Alignment
MR- L5 > € . . . .
w9 > g 2 = § and identity matrix analyses were conducted using MAFFT (Katoh
= — €t o
E:' g 5 > = > = = > = v e § a & Standley, 2013) and BioEdit (Hall, 1999). Sequences generated in
< B 32222220 53s5¢
- z2 < &K this study were submitted to the GenBank NCBI (National Center

85U8017 SUOWILLOD BA11E81D) 8|qeot[dde auy) Aq peueob ke S9o1e YO ‘8sn JO s3I0} ARIqiT8UIIUQ AB|IM UO (SUOTIPUOD-PUB-SWSH W00 A8 | 1M Ake.q)1|Bu 1 UO//:SANY) SUORIPUOD Pue SWie | 8U18eS " [7202/T0/62] Uo ARigiTauljuo AB(Im eiuenysuesyood Aq TZTHT PeayTTTT OT/I0p/L0o A 1M Ateiqpul|uo//Sdny Wwolj pepeojumod ‘2 ‘220z ‘Z89TS98T



%2 | wiLEy

NAGUIB ET AL.

Jransboundary and Emergi
&,

for Biotechnology Information) database (http://www.ncbi.nIm.
nih.gov/) and assigned accession numbers are shown in Table 1.
Reference sequences of NDV genotypes (Diel et al., 2012; Snoeck
et al., 2013) required for further analyses were retrieved from the
GenBank database. Phylogenetic analyses were performed and
trees were constructed using the 1Q-tree software version 1.1.3
(Minh et al., 2013; Nguyen et al., 2014) based on maximum likelihood
analysis of phylogenetic relationship after selection of the best fit
substitution model (GTR + F + | + G4). Finally, trees were viewed and
edited using FigTree version 1.4.2 software (http://tree.bio.ed.ac.
uk/software/figtree/) and Inkscape 0.51.

2.5 | Full Genome Sequencing

Full genome sequences of four successfully isolated NDV strains,
namely R1954/2011/cl-1, R1973/2011/cl-2, R1973/2011/cl-4, and
AR2178-14, representing three genotypes previously reported in
Egypt, were carried out. Briefly, RNA was purified from isolates using
TRIzol LS reagent (LifeTechnologies) and RNeasy mini kit (Qiagen,)
with on-column DNase digestion according to the manufacturer's
instructions. Conversion of RNA into double-stranded DNA was
performed using a cDNA synthesis system (Roche). Library con-
struction was done as previously described (Juozapaitis et al., 2014).
Sequencing was performed on an lllumina MiSeq instrument using
the MiSeq reagent kit version 3 (lllumina).

Assembly of the sequence data was done using the Genome
Sequencer version 2.6 software suite (Roche), and NDV-related
contigs were identified with BLASTn (BLASTn; http://blast.ncbi.nlm.
nih.gov/Blast.cgi). The obtained full-length NDV sequences were
submitted to GenBank (Table 1). Further, open reading frame (ORF)
analysis and annotation of the genome were carried out using the
Geneious software.

Phylogenetic analyses were carried out for both of F gene (par-
tial/full) and the whole genome sequence separately using reference

viruses as mentioned in the previous section.

2.6 | Pathotyping

Intracerebral pathogenicity index (ICPI) was determined following
European guidelines (CEC, 1992). Ten one-day-old SPF chickens
were inoculated intracerebrally with 0.05 ml of 107! diluted virus
stock (HA >32) and examined daily for eight days, and the ICPI is
calculated as described. Based on this score NDV isolates are con-
sidered lentogenic (-0.7), mesogenic (>0.7-1.3) or velogenic (>1.5)
(Alexander, 1998). Animal experiments were carried out in accord-
ance with a legally approved protocol (MV-LALLF- /7221.3-1.1-
030/13). Specific pathogen-free White leghorn chickens purchased
from Lohmann Animal Health, Cuxhaven, Germany, were raised in
isolation units at FLI until the age of inoculation. Infection and immu-
nization experiments were performed in separated cages at animal
biosafety level 3 (BSL-3). Feed and water were provided daily.

2.7 | Preparation of polyclonal anti-NDV
chicken antisera

Four reference NDV strains, Ulster, clone30, R151/94, and
R1468/12, representing the avian orthoavulavirus-1, I, VI (PPMV-1)
and VII.1.1, respectively, were selected for preparation of polyclonal
anti-NDV chicken antiserum in the FLI animal facility. Viruses were
first inactivated by betapropiolactone (Sigma; 0,05%,) treatment,
and 0.5 ml of each virus were injected in four 4 weeks-old-SPF
White Leghorn chickens via the subcutaneous route after mix-
ing with Freund's complete adjuvant (1:1). A second immunization
shot was given after 4 weeks. Collection of serum was performed
at seven days after the booster immunization, followed by inac-
tivation at 56°C for 30 min and stored at -20°C until further use.
Immunizations were carried out in accordance with the legally ap-
proved protocol (MV-LALLF- 7,221.3-2.5-010/10).

2.8 | Antigenic characterization

Antigenic analysis of three Egyptian NDVs AR2178/2014,
R1973/2011/cl-4, and R1954/2011/cl-6, as well as of another five
reference strains was performed by hemagglutination inhibition (HI)
assay as described (CEC, 1992). In addition to a panel of four poly-
clonal sera (refer the previous section) five HN-specific monoclonal
antibodies were used (mAb 617/161, mAb U85, mAb 7D4 were a
generous gift from AVLA-Weybridge and mAb 39-2, mAb 10 were a
gift from Bernd Kollner, FLI).

3 | RESULTS
3.1 | History of NDV isolates

Genotype VI.1.1 virus AR2178/14 was recovered from a diagnostic
sample obtained in Egypt in 2013. In contrast, genotype Il viruses
and XXI virus were present as mixtures within ND virus isolates ob-
tained in 2011 (R1954/11, R1973/11) that were submitted to FLI for
further characterization. The initially obtained consensus sequence
of the proteolytic cleavage site within the F, protein of isolate
(R1954/11) represents a polybasic recognition motive, characteristic
for virulent pathotypes. This would be in agreement with the ob-
tained ICPI of 0.91, representing a virulent NDV with intermediate/
mesogenic pathogenicity for chicks. In contrast, the sequence of the
second isolate (R1973/11) represents a cleavage site of a lentogenic
vaccine-type virus but had an ICPI of 1.88, clearly identifying the
isolate as virulent NDV with pronounced/velogenic pathogenicity
for chicks. Testing by pathotype-specific RT-qPCR assays using F
gene-directed primers and probes specific for avirulent and virulent
pathotypes (RT-F-qPCR) revealed that both Egyptian NDV isolates
of 2011 were positive for both avirulent as well as virulent patho-
types, indicating mixed infection (Tab. 1). By plaque purification,
clones with mono- (R1954/11/cl-1; R1973/11/cl-2) or polybasic
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cleavage sites (R1954/11/cl-6; R1973/11/cl-4) were finally obtained
from both samples proving the suspected co-infection. For the puri-
fied clones, unambiguous reactivity patterns in pathotype-specific
RT-gPCRs, sequences of the proteolytic cleavage site, and ICPI val-
ues were obtained even though the ICPI value of R1973/11/cl-2 was
at the border of 0.7 for lentogenic pathotypes.

3.1.1 | Genetic and phylogenetic characterization

Sequences of the F2 fragment (358 nt), including the proteo-
lytic cleavage site, were used for initial phylogenic characteri-
zation. BLAST tools indicated the highest homology for isolate
AR2178/14, with Egyptian Avian avulavirus-1/168-2012 (Genbank
accession: MN381174) with nt and aa identities each of 99%, clus-
tering in phylogenetic analysis with genotype VII.1.1 viruses (sup-
plementary Figure 1.). In contrast, virulent NDV clones from 2011
(R1954/2011/cl-6; R1973/2011/cl-4) showed the highest identi-
ties with EG-14/90 (Genbank accession: DQ096604) and chicken/
Nigeria/2006 (Genbank accession: MH092825), respectively. The
lentogenic clone R1954/2011/cl-1 matched 100% with vaccine
strain La Sota (Genbank accession: AF077761), while R1973/2011/
cl-2 matched with vaccine strain Hitchner B1 (Genbank accession:
JN872151). When sequence collections of the genotyping group
(Dimitrov et al.,, 2019) were used to create a first phylogenetic
analysis (S1), viruses grouped into genotype VII.1.1 (AR2178/2014),
XXI (R1954/2011/cl-6; R1973/2011/cl-4) and Il (R1954/2011/cl-1;
R1973/2011/cl-2). While genotype VII.1.1 viruses were circulating
in Egypt from 2012 up to 2019 (Figure S1), no further sequences for
NDV genotype XXI have been reported for chickens after 2011. It
is interesting to note that together with viruses from Egypt (1990,
2006) and Nigeria (2006), both XXI viruses are not assigned to a
specific sub-genotype. Instead, they form a separate branch to the
outgroup of Ethiopian genotype XXI viruses. However, with an es-
timated divergence of 0.1213 the genetic distance to the outgroup
viruses is equidistant to sub-genotpye XX.1.1, XXI.1.2 or XXI.2 with
0.1293, 0.1085 and 0.1438, respectively (Table S1). Subsequent vi-
ruses from Egyptian genotype XXI belong to sub-genotype XXI.1.1
and are derived from pigeons. These data indicate that R1954/2011/
cl-6 and R1973/2011/cl-4 are descendent of genotype VI viruses cir-
culating during the epizootics in Egypt in the 1960s, but now are
apparently extinct.

3.1.2 | Full genome sequence analysis

To verify and further analyse selected NDV isolates, full genome se-
quences were generated for both vaccine-type clones (R1954/2011/
cl-1, R1973/2011/cl-2) as well as for genotype XXI (R1973/2011/cl-
4) and VI1.1.1 (AR2178/2014) isolates. The genome length obtained
for the lentogenic NDV clones R1954/2011/cl-1 and R1973/2011/
cl-2 was 15,135 and 15,150 nt. The genomes of the virulent strains
AR2178/2014 and clone R1973/2011/cl-4 were 15,179 and 15,165
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nt long with a 6-nt-insertion ACCCCC or CCTCTC respectively in the
untranslated region (UTR) downstream of the NP gene.

The two NDV strains of and R1973/2011/cl-2 showed high-
est similarity to closely related vaccine-type virus La Sota C5 (ac-
cession: KC844235; R1954/2011/cl-1(99.8%)) (Table 2) and B1
(accession AF375823; R1973/2011/cl-2 (99.8%)) respectively (de-
tails see Table S2). On the other hand, the velogenic NDV strain
AR2178/2014 showed the highest nt sequence similarity of 99% to
the Chinese NDV strain SD04/2011 (accession: JQ015296), whereas
strain R1973/2011/cl-4 showed 94% nt similarity with the Japanese
NDV strain Osaka/2440/1969 (accession: AB853926), an ancestral
strain formerly assigned to genotype Vic but currently unclassified
because of lack of sequence information of a sufficient number of
related strains (Dimitrov et al., 2019).

Phylogenic analysis of the full F gene (Figure 1), as well as the
whole genome sequence (Figure 2), confirmed the phylogrouping
obtained by partial F-gene analysis (Figure S1). With respect to
R1973/2011/cl-4 the virus could still be identified as genotype XXI,
but again was an outgroup virus with an estimated divergence of
0.099736 to the Ethiopian viruses and 0.086579, 0.097996, 107,285
to XXI.1.1, XXI.1.2 and XXI.2, respectively. In contrast, strain
AR2178/2014 mapped with other Egyptian genotype VII.1.1 viruses
from poultry as well as from wild birds, a further indication that
this genotype virus was widespread in avian hosts in Egypt. Clones
R1954/2011/cl-1, R1973/2011/cl-2 were confirmed as vaccine-type
virus closely related to La Sota and B1, respectively.

Genome organization of the four fully sequenced NDV strains
was found to be identical to other Avian orthoavulavirus-1, contain-
ing six genes in the order of 3'-NP-P-M-F-HN-L-5'". Analysis of the F
protein of the four NDV strains revealed that three strains, namely
R1954/2011/cl-1, R1973/2011/cl-2 and AR2178/2014 (genotype
I, and VI1.11, respectively), possessed six potential N-glycosylation
sites (NGS); five within the ectodomain at amino acid (aa) positions
85, 191, 366, 447, and 471 and one in the cytoplasmic domain at
position 542. Strain R1973/2011/cl-4 (genotype XXI) possessed the
same five NGS in the ectodomain and an additional one at position
aa 4 (https://prosite.expasy.org/PDOC00001).

The predicted HN proteins of the two NDV strains R1973/2011/
cl-4 and AR2178/2014 (genotype XXl and VII.1.1, respectively) were
571 aa long, which is 6 aa shorter than those of the NDV strains
of genotype IlI, namely R1954/2011/cl-1 and R1973/2011/cl-4
(577 aa). The HN protein of all genotypes possessed five potential
NGS. Four NGS at positions 119, 341, 433 and 481 were common
in the four NDV strains, whereas NDV strains R1973/2011/cl-4
and AR2178/2014 (genotype XXI and VIIb, respectively) possessed
an additional NGS at site 508, and strains R1954/2011/cl-1 and
R1973/2011/cl-2 (genotype ll) at position 538.

Comparing the level of homology of the different isolates to the
La Sota and B1 vaccine strains (Accession No. AF077761) confirms
the close relationship between the genotype Il viruses. Regarding
genotype XXl and VII, both genotypes accumulated mutations com-
pared to the La Sota vaccine strain, but these changes were pres-

ent for both viruses to a comparable level with homology of 81.0
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TABLE 2 Similarity comparisons of nucleotide and amino acid sequences of ND viruses sequenced in this study and the LaSota vaccine
strain (AF077761)

Homology (%)

Nucleotide Amino Acid

Strain Genotype  Full NP P M B HN L NP P M F HN L
EG/R1954/2011/cl-1 1l 99.6 995 993 998 999 100 99.8 988 987 997 100 100 98.5
EG/R1973/2011/cl-2 I 98.8 98,6 993 991 992 990 992 9846 990 98.6 99.8 991 983
EG/R1973/2011/cl-4  XXI 83.0 843 818 852 843 829 861 920 801 899 88.8 881 919
EG/AR2178/14 VIl 824 847 823 830 836 810 855 908 818 879 88.3 879 918
homology (%) 100-96 95-91 90-86 85-81 80-76
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FIGURE 1 Phylogenetic tree of ND viruses based on nucleotide sequence of full F gene. Phylogenetic tree is based on maximum
likelihood calculations (IQTree software) under the best fit model (model: GTR+F + 1+G4) according to the Bayesian Information Criterion
(BIC). Numbers at nodes represent measures of robustness based on an ultrafast bootstrap approach implemented in IQTree. The sequences
of other reference strains as well as all publicly available Egyptian NDV were obtained from GenBank. Divisions and genotypes are
designated according to Dimitrov et al., 2019. Beside the phylogenetic tree of class 2 viruses the particular genotypes of interest (circled)
were magnified and Egyptian viruses are coloured in red with a black dot indicating the position of viruses of this study
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to 85.5%. For the different genes, no striking differences are evi-
dent. Comparing the amino acid (aa) composition of genotype XXI
and VII.1.1, the homology to Il strain La Sota is higher than on the
level of nucleotides, with 92 to 87.9% for NP, M, F, HN and L protein.
It is striking that the homology of the P protein was considerably
lower than the other genes with 80.1 and 81.9% for genotype XXI
and VII.1.1, respectively. When focussing on the HN protein, respon-
sible for receptor-mediated binding, our data reveal overall aa differ-
ences of 11.7% and 11.9% for XXI and VII.1.1 viruses, respectively,
compared to La Sota vaccine type (Table 3). Mutations accumulated
within the protein fragment encompassing the tail, transmembrane
part and stalk region (aa 1-125; 22,4% and 25,6%), whereas the glob-
ular head (aa 126-570), bearing relevant antigenic sites, was under-
represented and had an aa divergence of only 8.8% and 8.1% for
genotypes XXI and VII.1.1, respectively. Among the aa in the glob-
ular head, 21 of 39 and 35 substitutions were identical for both XXI
and VI1.1.1 viruses. These changes include six single point mutations
in sites that were described to be part of neutralization sensitive epi-
topes (Y203H, N263K, N347K, E494D, G495E and V514E) of the HN
protein (Table 3), that is site 23; site 3, site |, site12, site Il, site 2 (lorio
etal., 1989,1991). In an additional six positions, both viruses had sub-
stitutions compared to La Sota (aa, 266, 288, 310, 433, 443, 509)
but differed in aa composition. Unique changes were evident on 9
and 10 positions for genotype XXI and VII.1.1 viruses, respectively.
None of these isolate-specific sites affected known functional sites
directly. The vaccine-type isolates only R1973/2011/cl-1 had five
alterations that were all located within the globular head of the HN
protein. It is interesting to note that four of those mutations were
identical to closely related vaccine B1 strain. From mutations within
described mAb binding sites only epitope 23 (Y203H) was present in
the B1 strain, whereas the NA binding site (A502V) was identical to
the genotype XXI and VII.1.1 viruses.

3.1.3 | Antigenic characterization

By cross hemagglutination inhibition (HI) assays (Table 4) reaction
patterns of polyclonal chicken sera directed against clone 30 (Il) or
Ulster (1.2) and the Egyptian isolates of genotype Il were indistin-
guishable. Reactivity even with a phylogenetically distant class 1
APMV-1 isolate (R2919/06) was in the range of 2 log, steps. In con-
trast, reactivity of a serum raised against another genotype VII.1.1
virus (R1468/12) was considerably lower with genotype Il and | vi-
ruses (3 log,) as well as with the class 1 virus (4 log,). However, gen-
otype VII.1.1 specific serum did not distinguish between Egyptian
genotype VI and VII.1.1 viruses. In addition, a serum raised against
classical PPMV-1 virus (R151/94) assigned to genotype VI showed
equal reactivity to both genotype XXI chicken isolates, but reactivity
was decreased to genotype Il and | and class 1 virus and to a lesser
extent to genotype VII.1.1 viruses. Reactivity profiles obtained by
HI with a panel of mAbs further highlighted antigenic differences
between PPMV-1 and other genotype XXI strains (R1973/2011/
cl-4 and R1954/2011/cl-6). A second set of mAbs, reactive with

a 53# Yool

lransboundary and Emering Dise
&, 3 ¥

vaccine-type genotype Il viruses, varied in their reactivity profile:
whereas mAb U85 recognized genotype Il, | and R1468/12 (VII.1.1)
viruses, mAb 7D4 was specific only for vaccine type Il viruses, and
mADb 10 recognized an epitope present in genotype Il and | viruses.
These data strongly suggested that epitope-specific difference ex-
isted, but that they were of minor importance for recognition by
polyclonal sera that comprise antibodies directed against multiple
epitopes.

4 | DISCUSSION

NDV continues to cause outbreaks and substantial losses in the
poultry industry worldwide (Brown & Bevins, 2017; Dimitrov
et al,, 2016). In Egypt, in spite of the routine implementation of
ND vaccination, detection of NDV of genotypes Il, VI, and VII.1.1
have been reported continuously over the last 10 years (Orabi
etal., 2017; Saad et al., 2017; Sabra et al., 2017). Continuously grow-
ing phylogenic diversity points to the evolution of virus populations
that display a genetic distance to vaccine-type NDV genotype II.
This observation has been taken as an indication for antigenic vac-
cine mismatch and a cause for suspected vaccine failure (Dimitrov
et al., 2017; Nagy et al., 2020). In this model, new NDV strains
emerge because of a change in antigenic sites relevant for protec-
tion. To test this hypothesis for the situation in Egypt an NDV iso-
late from 2011 representing NDV genotype XXI was compared to
a currently and continuously detected NDV genotype in chickens
(Ewies et al., 2017; Moharam et al., 2019; Radwan et al., 2013; Saad
et al., 2017)in Egypt (VII.1.1). Sequence analyses focussed on sites
of the HN glycoprotein reported to be sensitive for receptor block-
ing and virus neutralization (Crennell et al., 2000; Yuan et al., 2011).

Based on the new classification system proposed by Dimitrov
et al. (2019), viruses sequenced in the current study were grouped
phylogenetically as genotype Il, XXI and VII.1.1. The latter geno-
type originated from China and circulated extensively in the Middle
East (Ewies et al., 2017; Radwan et al., 2013; Saad et al., 2017). In
contrast, NDV genotype XXI has not been recorded in poultry after
2011. This group of viruses is a descendent of viruses that circulated
in poultry in the 1960 and diversified into genotype XX, XXl and VI
(Dimitrov et al., 2019) (Hicks et al., 2019) Evolutionary time scale
analysis indicated that genotype XX appeared around 1959 in poul-
try (Chong et al., 2013) forming sub-lineage Vlai that arose in Eastern
Asia and later circulated in Europe, causing sporadic ND outbreaks in
Western Europe and Bulgaria in the mid1990s (Czegledi et al., 2002;
Ujvari et al., 2003). A second branch includes the new genotype
XXI and the consolidated genotype VI (former sub-genotype VIb).
Viruses from genotype VI were successful to establish a pandemic
in pigeons and are referred to as PPMV-1 (Chong et al., 2013; Ujvari
et al., 2003). Likewise, other descendants of genotype XXI estab-
lished infections in pigeons. These pigeon-derived viruses are accu-
mulated in three sub-genotypes, that is XXI.1.1; XXI.1.2 and XXI.2,
respectively with genotype XXI.1.1 subsequently detected in Egypt
(Sabra et al. (2017). These phylogenetic data highlight the possible
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IX_IX_FJ436302_chicken_China_F48E8_1948 |1X

IV_IV_AY741404_Herts_33
_"'7— IV_IV_MH996900_pullet_Bulgaria_Plovdiv_1153_1959 | v
1 ———— XI_XI_HQ266602_chicken_Madagascar_MG_725_2008 ||

L— XI_XI_HQ266603_chicken_Madagascar_MG_1992_2008

0.02
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interspecies transmission of genotype XXI viruses but clearly sup-
port the notion that isolates R1954/2011/cl-1 R1973/2011/cl-2 are
original poultry-derived strains and not a spill-over infection from
pigeon to poultry as described for PPMV-1 in the 1980s in England
(D. J. Alexander et al., 1985). This notion of genotype XXI being a
virus circulating in poultry is further supported by the finding that
closely related viruses were detected in chickens in Ethiopia in 2011
and 2012 (de Almeida et al., 2013). However, genotype VII.1.1 vi-
ruses dominate subsequent outbreaks in Egypt. This observation
indicates that genotype XXI was superseded in poultry but XXI.1.1
is still present in pigeons. It was considered that ND vaccination is
a driving force for virus evolution (Chong et al., 2010) with a selec-
tion of escape variants (Cho et al., 2007; Cho et al., 2008). In this
respect, genotype VII.1.1 virus (AR 2178/2014) should harbour mu-
tations within neutralizing sites not present in genotype XXI virus
(R1973/2011/cl-2). However, when analysing sites that are part
of neutralizing epitopes within the HN molecule, all six mutations
present in genotype VII.1.1. virus were also present in genotype
XXl virus. It was remarkable that for 5 out of 6 sites mutations were
associated with a change of principal properties of the amino acid,
that is a change from hydrophobic to alkaline, positively charged
(Y203H), from acidic, negatively charged to alkaline, positively
charged (N263K, E347K), from neutral to acidic, negatively charged
(G494D) or from hydrophobic to acidic, negatively charged (V495E).
This indicates that mutations might be associated with a change of
antigenic properties. In line with this assumption are the data from
the cross HI tests. Reactivity profile with mAb revealed changes in
specific epitopes and also polyclonal sera discriminated between vi-
ruses from different genotypes. However, overall our data support
the notion that NDV / avian orthoavulavirus-1 is still a single sero-
group (Miller & Koch, 2013) and a discrimination between genotype
XX and VIl was not evident. Taken together, our data do not indicate
that a switch of antigenic sites were the driving selection criterion
for the replacement of genotype XXI by genotype VII.1.1. This would
be in line with the observation that the overall mutation rate of NDV
indicates strong purifying (negative) selection for all proteins (Chong
et al., 2013; Miller et al., 2009).

Strikingly, both historical XXl isolates contained also a vaccine-
type virus (genotype Il). Co-infections were finally revealed by
pathotype-specific RT-gPCR but would have been concealed
by regular pathotyping using Sanger sequencing: The F protein
cleavage site of virulent strains carries a polybasic motive (M2R/K-
R-Q-K/R-R*F''), and avirulent NDV strains harbour *G/E-K/R-Q--
G/E-R*L'® and a leucine at position 116 at the F protein cleavage
site (Collins et al., 1993; de Leeuw et al., 2005; Peeters et al., 1999;
Rémer-Oberdérfer et al., 1999). For isolate R1954/11 the obtained
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polybasic cleavage site corresponded to the ICPI, however pointing
to a mesogenic pathotype. Sanger sequence of isolate R1973/11
pointed to an avirulent pathotype, but the ICPI result clearly revealed
a velogenic pathotype. Such apparently contradicting results have
been published before (Nagy et al., 2020; Tan et al., 2008), but were
not further resolved. After observing such contradicting results, we
plaque cloned both isolates and were able to separate two different
NDV: besides genotype XXl virus, a vaccine-type virus (genotype Il)
was obtained. Subsequent pathotyping of the cloned viruses by ICPI
now matched with the sequence of the proteolytic cleavage site,
and full genome sequence comparison of the sequenced lentogenic
strains reveals a close relationship to vaccine strain Hitchner B1/
JN872151 (R1973/2011/cl-2) or La Sota /AF077761 (R1954/2011/
cl-1). This finding further supports the notion of re-isolated vac-
cine strains and is clearly distinct from described virulent genotype
Il viruses, detected in ND outbreaks in 2006 in Egypt (Mohamed
et al.,, 2011). All viruses from the year 2006 (NDV/chicken/
Egypt/2-4/2006; FJ969393, FJ969394, FJ969395) belong to geno-
type Il but are of velogenic pathotype with ICPI values between 1.6
to 1.8 and have a corresponding proteolytic polybasic cleavage site
(RRQKR*FIG). The re-isolation of vaccine-type virus is in line with
an earlier description (Abolnik et al., 2004; Nagy et al., 2020), and it
is conceivable that emergency vaccination in flocks with suspected
ND might lead to such double infections. These circumstances have
been considered by the OIE (OIE, 2018) when defining criteria for
virulence: The definition includes the sequence information of the
proteolytic cleavage site, but has the amendment “Failure to demon-
strate the characteristic pattern of amino acid residues as described
above would require characterization of the isolated virus by an ICPI
test”. In the brain, multicycle replication is restricted to virulent NDV
due to the cleavability of the F protein (Nagai et al., 1976; Rott, 1979)
and thus brain passage leads to enrichment of virulent NDV. In case
of contradicting results as described by others (Nagy et al., 2020;
Tan et al., 2008) sequencing of re-isolated virus from the brain is
indicated.

Overall the failure to demonstrate antigenic escape in the gen-
otype XXI precursor and its genotype VII.1.1 successor virus in-
dicates that other factors contributed to the assertiveness of a
specific ND virus population. Like in Influenza A virus (Neumann &
Kawaoka, 2015; Suttie et al., 2019) the evolutionary fitness of NDV
may also be associated with other viral genes. Studies on AlV have
demonstrated that genomic factors skewing viral fitness, such as
replication and transmission efficacy, do not reside exclusively in the
glycoprotein-encoding genes (Pantin-Jackwood et al., 2017). Further
studies will help to elucidate this hypothesis and help to better un-
derstand the epidemiology of different NDV genotypes in poultry.

FIGURE 2 Phylogenetic tree of NDV viruses based on whole genome sequences. Phylogenetic tree was based on maximum likelihood
calculations (IQTree software) under the best fit model (model: GTR+F + I+G4) according to the Bayesian Information Criterion (BIC).
Numbers at nodes represent measures of robustness based on an ultrafast bootstrap approach implemented in IQTree. The sequences of
other reference strains as well as all publicly available Egyptian NDV were obtained from GenBank. Divisions and genotypes are designated
according to Dimitrov et al., 2019. Egyptian viruses are coloured in red with a black dot indicating the position of viruses of this study
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TABLE 3 Amino acid mutations of Egyptian viruses within the HN protein

HN amino acid 6 7 9 13 24 28 29 31 33 34
Virus stamm / genotype
LaSota 1l S Q A D | A | F T \'%

B1 Takaaki I
(AF373823)

EGY/ 1
R1954/2011/
cl-1
EGY/ 1
R1973/2011/
cl-2
EGY/ XXI R R \% E \" \% A L | |
R1973/2011/
cl-4
EGY/ Vil N R \% E \" . \ L M A
AR2178/2014

Globular head (aa 126 - 570)

HN 127 145 155 156 182 197
amino
acid

220 249 254

Virus stamm / genotype

LaSota 1l | A A F A R Y F M \Y
(KC844235)

B1 Takaaki 1
(AF373823)

EGY/ 11
R1954/2011/
cl-1

EGY/ 1l . . . . . . . . A
R1973/2011/
cl-2

EGY/ XXI v 1 . Y . K Y 1
R1973/2011/
cl-4

EGY/ Vil \Z2 \'% Y T
AR2178/2014

changes of amino acids (aa):
compared to other sequences investigated
within known mAb-binding site

within NA-binding site

35 36 41

265 266

42

269

44 49 54 56 57 60

288 290 293 304 310 315
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62 65 66 68 70 71 73 75 77 81 101 102 118 120 123

R R A E I T T G N V T T AN W
V K T D M L s s c

V K T D V L S G I S V E S C

324 329 340 342 352 362 366 369 384 395 396 404 433 439 443 452 466 479 .50-2508 509 I522 540 546 548 570
s vy Dp e Il GG G I E V T I S HTI VY GV A S T I T TAI G
T D :

. A . N v . R . . I M V. Y R I : I H N V . AV V R
. A H N . A . v R | . . N . M VvV I . N 1 . A . . R

different aa in R2178/14 (VI1.1.1) compared to R1973/2011/cl-4 (XXI)
next to known mAb-binding site

next to NA-binding site
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TABLE 4 Antigenic characterization of the NDV strains isolated in this study and NDV reference viruses as well as anti-F mAbs

Virus-Antigen

class 1 class 2
class 1 | 1] \|
R2919/06 Ulster  Clone R 151/1994
30
Serum Hl antibody titre (log2)
a-Ulster (1) 10 10 11 11
a-clone30 (l1) [
a-R151/94 (PPMV-1) 5 6 6

a-R1468/12 (VII.1.1)

mAb 617/161
mAb 39

mAb U85
mAb 7D4
mAb 10

AHI to homology virus <2
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